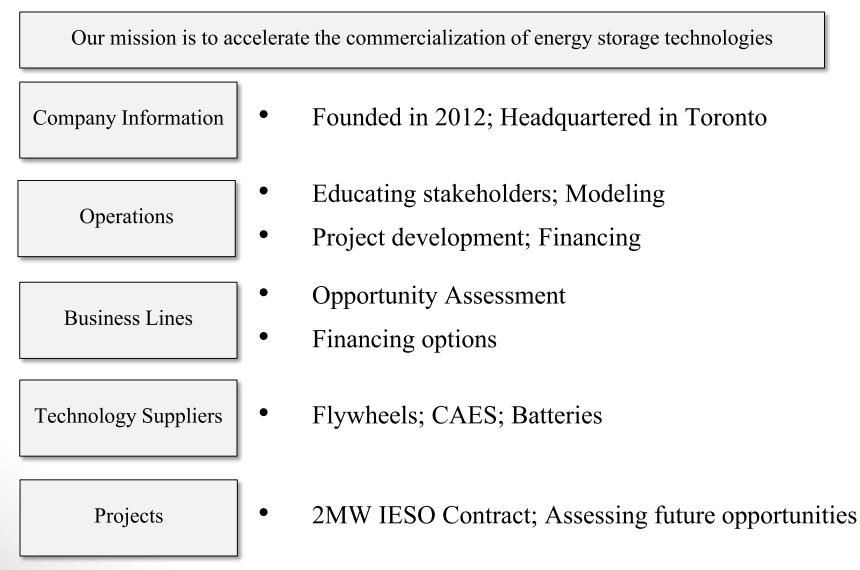


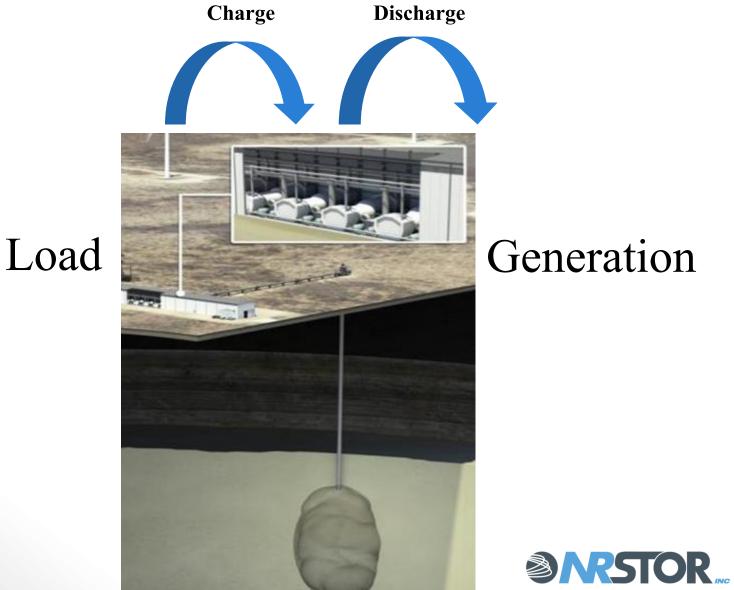
Future Innovation in Energy Planning

A Special Session to Advise on Ontario's Long-term Energy Future

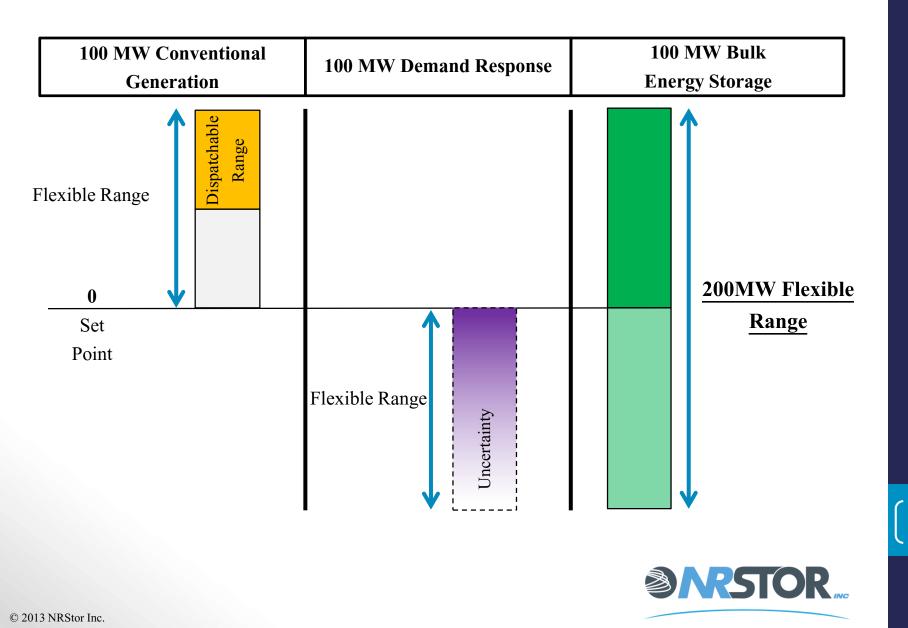

Emerging Generation Technologies: A 20-Year Prognosis

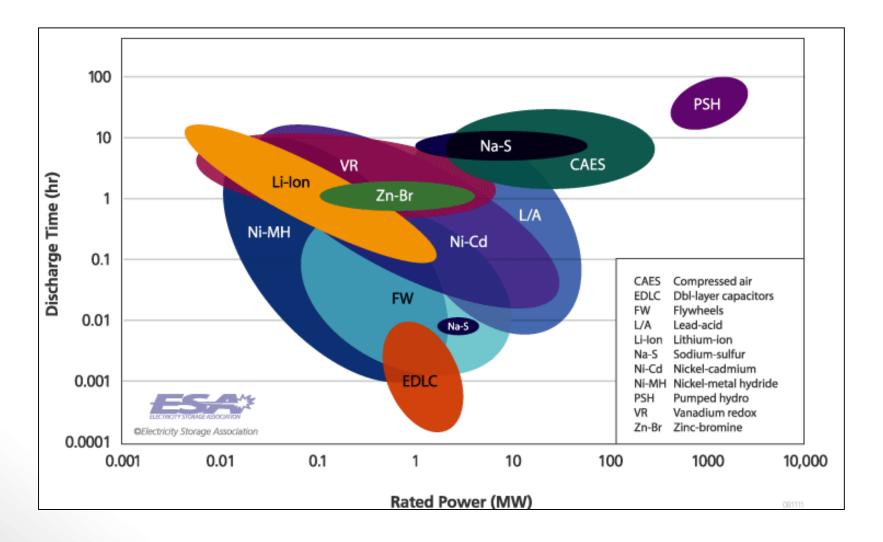
Alexander McIsaac September 26th, 2013

- 1. Who is NRStor
- 2. What is Energy Storage
- 3. Energy Storage as Flexible Generation
- 4. Energy Storage Technologies Available Today
- 5. Different Generation Profiles For Different Services
- 6. Hurdles Facing Energy Storage in Ontario
- 7. Policy Change Happening Internationally
- 8. Examples of Successful Projects
- 9. What Can Government, Business and Academia do?

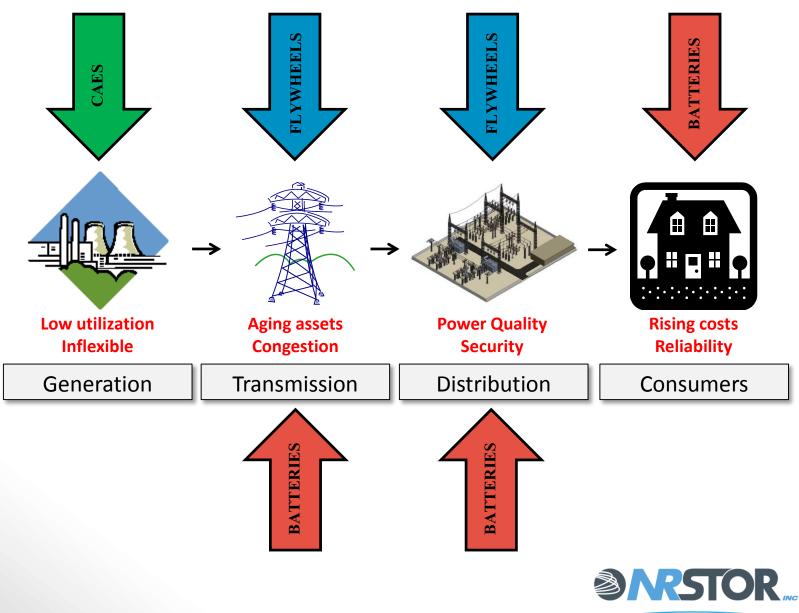


NRStor Company Background




What is Energy Storage?

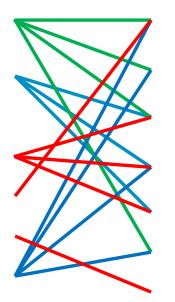
2X the Resource on 1X the Interconnection



Technologies Available Today

NRSTOR

Technologies Have Many Applications on the Grid


© 2013 NRStor Inc.

Different Generation Profiles For Different Services

Optimizing Ontario's Assets:

Technology:

CAES Flywheels Batteries: Lithium-ion Sodium-Sulfur Lead-Acid Pumped Hydro

Service:

Fast peaking generation Storing surplus energy Wind integration Frequency regulation Voltage support Efficient gas generation UPS

Hurdles Facing Energy Storage in Ontario

- Developing the business case
 - i. Diffused benefits across multiple stakeholders
 - ii. Quantifying benefits and avoided costs
- Educating stakeholders
 - i. Current state of the energy storage readiness
 - ii. Understanding the business case
- Regulatory and procurement environment
 - i. No set targets for storage capacity
 - ii. Not currently included in the DSC, TSC and related licenses
 - iii. Not treated as a wholesale load

Policy Change Happening Internationally

1. United States

- FERC Orders 755 & 784
- California
 - i. Proposed procurement targets
 - ii. Proposed procurement structure (reverse auction mechanism)
 - iii. Mandated market growth
- Texas
 - i. Wholesale Storage Load (WSL) treatment
- 2. Germany
 - World-leader in renewable generation
 - Energy storage subsidy

Energy Storage Business Cases for Ontario

Business Case	Technology	Where is the value?
LDC Smart Grid	Flywheel/Battery	T&D asset deferral; Improved power quality/reliability; Enable higher penetration of green energy and EVs
Regulation services	Flywheel	Faster response frequency regulation; Let traditional gens operate more efficiently
Centralized bulk storage	CAES; Pumped Hydro	New combustion turbine deferral; optimizes grid assets (ie. wind integration)
Industrial & Commercial Customer	Battery	Avoid business interruption (equipment damage, product loss; productivity)
Island & Remote Microgrids	Flywheel/Battery	Reduced diesel fuel & maintenance costs; T&D asset deferral; Renewable integration

Field Battery Energy Storage Project

Business Case	Where is the value?
LDC Smart Grid	T&D asset deferral; Improved power quality/reliability; Enable higher penetration of green energy and EVs

Project Specifications	
Technology	Battery
Size	2 MW; 12MWh
Operational Date	2013
Function(s)	Backup Power
Location	Field, British Columbia
Owner	BC Hydro



NRStor Inc. 2MW Flywheel Project

Business Case	Where is the value?
Ancillary services	Faster response frequency regulation; Let traditional gens operate more efficiently

Project Specifications		
Technology	Flywheel	
Size	2MW; 500kWh	
Operational Date	2014	
Function(s)	Frequency Regulation	
Location	Minto, Ontario	
Owner	NRStor Inc.	

General Compression GCAESTM Demonstration

Business Case	Where is the value?
Centralized bulk	New combustion turbine deferral; optimizes grid assets (ie.
storage	wind integration)

Project Specifications	
Technology	General Compression
	Advanced Energy
	Storage (GCAES TM)
Size	2MW; 500MWh
Operational Date	2012
Function(s)	Wind Integration
	(Advanced Prototype)
Location	Gaines, Texas
Owner	General Compression

Bath County Pumped Storage Station

Business Case	Where is the value?	
Centralized bulk	New combustion turbine deferral; optimizes grid assets (ie.	
storage	wind integration)	

Project Specifications	
Technology	Pumped Hydro Storage
Size	3GW; 30 GWh
Operational Date	1985
Function(s)	Long duration storage
Location	Bath County, Virginia
Owner	Dominion Virginia
	Power & Allegeny
	Power

UPS for Industrial Customers

Business Case	Where is the value?
Industrial &	Avoid business interruption (equipment damage, product loss;
Commercial Customer	productivity)

Project Specifications	
Technology	Battery
Size	4MW
	(60 sec. duration)
Operational Date	2010
Function(s)	UPS
Location	Phoenix, Arizona
Owner	Phoenix NAP Data
	Center

Maldives Off-grid Microgrid

Business Case	Technology	Where is the value?
Island & Remote	Flywheel/Battery	Reduced diesel fuel & maintenance costs;
Microgrids		T&D asset deferral; Renewable integration

Project Specifications	
Technology	Battery
Size	1MW; 1.2MWh
Operational Date	2013
Function(s)	RE Integration
Location	Gasfinolhu Island
	Resort, Maldives
Owner	T&D Water
	Technologies and
	Development

What Can Government, Business and Academia do?

- 1. Define targets
- 2. Procurement programs
- 3. Regulatory policy inclusion:
 - 1. LTEP and regional planning
 - 2. Appropriate storage rate class
 - 3. OEB's renewed regulatory framework for electricity proceedings
- 4. Continuous improvement of research and modeling

Thank You

Alexander McIsaac

Associate

Tel: (416) 360 2089

E-mail: amcisaac@nrstor.com

